Interactions Between Wild and Hatchery Spring Chinook Salmon Spawning In An Artificial Stream

S.L. Schroder,

C.M. Knudsen,

T.P. Pearsons,

T.W. Kassler,

S.F. Young,

E.P. Beall, &

D.E. Fast

Types Of Fish Used

Location Of The Cle Elum Supplementation Research Facility

- Wild: Native Upper Yakima River Spring Chinook With Little Or No Hatchery History
- Hatchery: First-Generation ,
 Derived From Native Upper Yakima
 River Spring Chinook (Local Stock)

Why An Artificial Stream?

Confounding Factors Can Be Controlled

- Physical Environment (Gravel,Water Velocity & Depth)
- Fish (No., Type, Maturation, Condition, Entrance Timing)
- DNA (All Adults & Subsample Of Fry)
- Behavior (Correlate Individual Behavior with Fish Origin & Breeding Success)

Types Of Fish Placed Into The Stream

Hatchery & Wild 4 & 5 yr –old males & Females:

("Large Anadromous Fish")

Hatchery & Wild 3-yr-old males:("Jacks")

Types Of Fish Placed Into The Stream

Hatchery Origin "Yearling Precocious Male"

Wild Origin "Yearling Precocious Males"

Types Of Fish Placed Into The Stream

Wild "Sub Yearling Precocious Male"

Prior To Placement, Each Fish Was:

And, A Small Bit Of Fin Material Was Removed For Later DNA Extraction

They Were Then Released Into The Stream & Spawned Under Quasi-Natural Conditions

Data Sources

Effect Of Female Density On Egg Deposition

Egg Deposition

Wild = 93.2%Hatchery = 89.1%P = 0.15 paired-*t* test

Effect Of Female Density On Survival Of Deposited Eggs

Survival Of Deposited Eggs

Wild = 60.2%Hatchery = 54.6%P = 0.04 paired t-test

Factors Affecting Egg-To-Fry Survival Rates

- Redd Location
- Nest Construction & Egg Burial
- •Redd Defense

Distribution Of Hatchery and Wild Females Throughout The Observation Stream

Redd Locations Of Hatchery & Wild Females

Nest Construction Activities Compared

- Digging Frequency
- Body Flexures Per Dig
- Egg Burial

Body Flexures Per Dig Before & After Spawning

Egg Burial Times For Hatch & Wild Females

Redd Abandonment

Observed Causes:

- Weakness
- Eviction
- Establishment Of
 Another Redd*
- Unknown*

Affect Of Female Origin & The Occurrence Of Multiple Redds

Female Origin & Redd Abandonment

Male Breeding Success Depends Upon:

Mate Choice

Behavior & Gamete Viability

Relative Size

Mate Choice By Female Origin

Male Behavior: Courting

Mean Courting Acts Per Min

No Difference Between Hatchery & Wild Males

H = .20 acts/min W = .25 acts/min

P = 0.16

Male Behavior: Agonism

Attacks Per Min

Wild > Hatchery

H = .34 attacks/min W = .45 attacks/min

P = 0.015

Affect Of Male Body Wt On Breeding Success

Wild > Hatchery

$$H = 3.67 \text{ K}$$

 $W = 4.05 \text{ K}$

9.3% Difference

$$P = 0.035$$

Male Breeding Success

- Number of Mates
- Production of Progeny

Number of Mates

No Difference Between Hatchery & Wild Males

H = 3.5 Mates/male W= 3.6 Mates/male

P = 0.79

Mean Breeding Success

No Difference Between Hatchery & Wild Males

$$H = 2.6\%$$

 $W = 3.0\%$

$$P = .22$$

Jack & Precocious Male Abundance May Increase Due To Artificial Culture

At The Cle Elum Supplementation Research Facility:

- •37 49% Of All Males Matured At Age 2 (Larson et al. 2004) 125,000/yr (Pearsons et al. 2009)
- •Jacks increased From 8.5% To 22.9% After One Generation Of Culture (Knudsen et al. 2006)
- Similar Decreases in Male Age At Maturity Have Been Observed In Other Hatcheries (e.g. Mullan et al. 1992)

What Genetic Effects Might Enhanced Numbers Of Early Maturing Males Have On Wild Spring Chinook Populations?

- 1) Must Know Their Abundance On The Spawning Grounds, and
- 2) Their Relative Breeding Success Under Natural Conditions

Effect Of Tertiary Sex Ratio On Individual Male Breeding Success

Tertiary Sex Ratios Vs. Progeny Paternity

% Male Life History Type Vs. Progeny Paternity

% Male Life History Type Vs. Progeny Paternity

% Of Population Made Up Of A Male Type (Arcsine)